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Abstract : Let Rbe a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. Let F and G be two generalized
derivations with associated derivations f and g, respectively, the main result We that if F(x)x —xG(x) = 0 for all x € J,
thenR is commutative and F = G or G is a left multiplierand F = G + f.
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. INTRODUCTION

Let R will be an associative ring and Z(R) the centre of R. For anyx,y € R, the symbol [x, y] and xoy denote the Lie
product xy — yxand xy + yxrespectively.We recall that a ring R is prime if for any a,b € R, aRb = {0} implies a = 0 or
b = 0. An additive mapping d: R — Ris called a derivation if d(xy) = d(x)y + xd(y)hold for allx,y € R.

In [4] Bresar introduced the definition of a generalized derivation: An additive mapping F: R - R is called a
generalized derivation if there exists a derivation d: R — R,called the associated derivation of F, such that F(xy) = F(x)y +
yF(y), Vx,y € R.The notion of generalized derivations covers both the notions of a derivation and of a left multiplier and
an additive mapping satisfying f(xy) = f(x)y, Vx,y € R. Aring R is said to be n-torsion free, where n=0 is a positive
integer, if whenever na = 0, with a € R, then a = 0. An additive subgroup Jis said to be a jordan ideal of Rif uorej for all
uefand reR. All ideal of Ris a Jordan ideal of R but the Jordan ideal need not be ideal..Anadditive subgroupU of R is said
to be a Lie ideal of R if[u,7] €U for all ueU and r<R. It is clear that if characteristic of R is 2, then Jordan ideals and Lie
ideals of R are coincide.

Several authors have proved commutativity theorems for prime and semi-prime rings admitting derivations of
generalized derivations. It is worth mentioning that the investigation in this direction started with Posner in his famous paper
[1] (see also the interesting work of Bresar[2]). Recently, in [5], EI-Soufi and Aboubakr proved the following result:

Let R be a 2-torsion free prime ring, / be both a nonzero Jordan ideal and a subring of R, and F be a generalized
derivation with associated derivation f. If one of the following properties holds: (i) F (x)x = xf (x) (ii)F (x?) = 2F (x)x

(ID)F(x?) = 2xF (x)(iv)F (x?) — 2xF (x) = f(x?) — 2xf (x)

Forall xe/ then J< Z(R).

In [5, Example 3.8], they gave an example showing that the above result is not true in general if we assume that J is only
a subring of R. In this paper we show that in fact, then condition of J being a subring is redundant. Indeed we prove this fact
in a more general context. First, we focus on the generalization of the first assertion which is in fact our main result in this
paper. As consequence we get generalization of other assertions.

1. Preliminary results

Let us begin with the following lemmas which will sometimes be used without explicit mention.
Lemma 2.1 ([7], Lemma 2.4).If ] is a nonzero Jordan ideal of a ring R, then
2[R,R])J cJ and 2J [R,R] cJ.
Lemma 2.2([7], Lemma 2.6).Let R be a 2-torsion free prime ring and J be a nonzero
Jordan ideal of R. If, for two elements a,b e R, aJb = (0),then
a=0o0rb =0.
Lemma 2.3([7], Lemma 2.7).Let R be a 2-torsion free prime ring and J be a nonzero
Jordan ideal of R.If [J,J] = O,then R is commutative.

Lemma 2.4([6], Proof of Lemma 3).Let R be a 2-torsion free prime ring and J be a
nonzero Jordan ideal of R. Then,4 j2R cJ and 4R j’c], V j €].

Lemma 2.5([6], Proof of Theorem 2.12). Let R be a 2-torsion free prime ring and J be a
nonzero Jordan ideal of R. Then4jRj <] , Vj €].

We will also make use of the following basic commutator identities:
[x,yz] = y[x,z] + [x,y]z and [xy,z] = x[y, z] + [x, z]y

2. Main results

We prove the following particular case of our main theorem.
Lemma 3.1 Let R be a 2-torsion free prime ring and two generalized derivationsF and G associated with f and g,
respectively. If F(x)x — xG(x) = 0 forall x € R, then one of the following condition satisfy:
(1) R iscommutative and F = G.
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(2) G isaleft multiplierandF =G + f.

Proof. LetR be a 2-torsion free prime ring and two generalized derivations F and G associated with f andg , respectively
Assume that

F)x —xG(x) =0 forall x € R...ocooiiiii e, (1
The linearization of (1) gives
FxX)y+Fy)x —xG(y)+yG(x) =0 forallx,y €ER..................ooooii. (2)

Replacing y by yx in (2) we get
F(x)yx + F(yx)x — xG(yx) + yxG(x) =0 forall x,y € R

Vf()x —xyg(x) —yxG(x) + yG(x)x =0 forallx,y €R...................... 3)
Replacing ry by y in (3) we get

ryf(x)x —xryg(x) —ryxG(x) + ryG(x)x =0 forallr,x,y €ER................. 4
Left multiplying (3) by r we get

ryf(x)x —rxyg(x) —ryxG(x) + ryG(x)x =0 forallr,x,y €ER................... (5)

Subtracting (5) from (4), we get
rxyg(x) —xryg(x) = Oforall r,x,y € R
(rx —xr)yg(x) =O0forallr,x,y € R
[r,x] Rg(x) = 0forall 7,6 € R.uoveniiiie e (6)
From the primeness of R, Equation (6) together with Brau’s trick force that R is commutative or g = 0. So, for the case
where R is commutative, Equation (1) becomes
(F(x) —G(x))x =0 forallx € R, then F =G.
Otherwise , equation (4) becomes

ryf()x —ryxG(x) +ryG(x)x =0 forallr,x,yER.............ocoiiiiiiiiinl, (7
fO)x —xG(x) +Gx)x =0 forallx ER.....oooviiiiiiiii (8)
fO)x—F)x+G(x)x =0 forallx ER......oooviiiiiiiiiiiie e, 9)
(f(x) —F(x) + G(x))y + (f(y) —FQly)+ G(y))x =0 forallx,yeR............ (10)

The linearization of (9) gives

(f(xt) — F(xt) + G(xt))y + (f(y) —FQly)+ G(y))xt =0 forallt,x,y €eR...... (11)
Right Multiplication of (10) by t gives

(fF)—F)+6)yt+(f) —F(») +G6(y)xt =0 forallt,x,y €R....... (12)
Subtracting (12) from (11), we get

(f(xt) — F(xt) + G(xt))y - (f(x) —F(x)+ G(x))yt = Oforallt,x,y €R ....... (13)

(f(x) —F(x)+ G(x))ty — (f(x) —F(x) + G(x))yt = Oforallt,x,y ER ....... (14)
Replacing t by tr we get

(f(x) —F(x)+ G(x))try — (f(x) —F(x)+ G(x))ytr = Ofor allr,t,x,y € R....(15)
Right multiplying (14) by r we get

(f(x) —F(x)+ G(x))tyr — (f(x) —F(x)+ G(x))ytr = Oforallr, t,x,y €ER ....... (16)
Subtracting (16) from (15) we get

(f(x) —F(x)+ G(x))try — (f(x) —F(x) + G(x))tyr = Oforallr,t,x,y € R

(f(x) —F(x) + G(x)) (try — tyr) = Oforallr, t,x,y € R

2 (fx) =F(x) +G(x)) t(ry —yr) = Oforallr, ¢, x,y € R

(f(x) —F(x) + G(x)) tly,r] = 0forallr,t,x,y ER ...cocoviiiiiiiiiiiiiiiiien, (17)

~The primness of R together with (17) gives f = F — G

Now, we are to prove our main result.
Theorem 3.2: LetR be a 2-torsion free prime ring, J be a nonzero Jordan ideal ofRand two
generalized derivations F and G associated with f and g , respectively.
If F(x)x — xG(x) = 0 forall x € J, then one of the following condition satisfied :

(1) R iscommutative and F = G.

(2) G isaleft multiplierand F =G + f.
Proof: Let R be a 2-torsion free prime ring, / be a nonzero Jordan ideal of R and two
generalized derivations F and G associated with f and g , respectively.
Assume that
Fx)x—xGx)=0forallx € J ..o €))
Case (i) Z(R) n ] = {0}
The linearization of (1) gives
F(xX)y+F(y)x —xG(y)+yG(x) =0 forall x,y €]

Replacing x by 2x? and y by 4yx? in (1), we get
F(2x®)4yx? + F(4yx?)2x? — 2x2G(4yx?) + 4yx?G(2x%) = 0 forall x,y € |
yf(x)x? — x%yg(x?) —yx?G(x?) + y6(x)x? =0 forallx,y €J.................. )

Substituting 2[r, s]y in place of y in (2), where r, s € R, we get

2[r, slyf (x®)x? — x22[r, slyg(x?) — 2[r, s]lyx2G(x?) + 2[r, s]yG (x?)x? = 0
forallr,s€eR,x,y €]
[, slyf (x*)x? = x2[r,slyg (x*) — [r, slyx*G(x*) + [, s]yG (x*)x* = 0

FOr Al 77,8 € R, X, Y € e (3)
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[r,slyf (x®)x? — [r,s]x%yg(x?) — [r,s]yx2G(x?) + [r,s]yG(x*)x?> = 0
FOr Al 77,8 € R, X, ) € i e @)
Subtracting (4) from (3), we get

[r,s]x?yg(x?) — x*[r,s]lyg(x*) = 0
[[T, 5],352]3’9(352) =0

[[ns],xzjyg(xz) = 0
I, s, 23] Jg(x®) = 0forall 7,8 E R, X € J.viivviiiiiiiiiii e, (%)
By the primness of R together with Lemma 2.2, we find [[r,s],x2] = 0 or g(x?) = 0. Clearly, in both cases, we arrive at
g(x?) = ofor all x € J, This implies that g = 0
(by [5, Lemma 3]). Now, replacing y by 2[r, uv] x in
vf(x)x —yxG(x) + yG(x)x = 0 where x,y €] and r € R, we get
2[r,uv] xf (x)x — 2[r,uv]x xG(x) + 2[r,uv] xG(x)x =0 forallx,y €]J,r eR

[r,uv] f(x)x — [r,uv] xG(x) + [r,uv] G(x)x =0 forallu,v,x €J,r eR.......... (6)

s ruv] fO)x = [r,uv] F(x)x + [r,uv] G(x)x =0 forallu,v,x €J,r eR

S uw](fO)x —F)x+G(x)x)=0 forallu,v,x €J,7 €R....eeiiiinnnn, @)

The fact that R is a non commutative prime ring forces that

fO)x —F)x+G@)x=0forall x €] ..oooiiiii e (8)

The linearization of (8) gives

f)Yy-—FX)y+G6cx)y+f(y)x —FO)x+Gy)x =0forallx,y e/ ............. 9)

Replacing y by 2y [r,uv] in (9), we take, for all u,v,x,y eJand r € R,

fO)2y [r,uv] — F(x)2y [r,uv] + G(x)2y [r,uv] + f2y [r,uv])x — F 2y [r,uv])x + G2y [r,uv])x = Ofor all

uw,v,x,y€J, r R

fy [r,wv]-F )y [r,uv] + G(x)y [r, uv]

+f(y [r,uvDx — F(y [r,uv])x + G(y [r,uv])x = Oforall w,v,x,y €] ,r €R
f)y [r,uwv]-F )y [r,uv] + G(x)y [r, uv]

+f)[r,uv]x — F)[r,uv]x + G(y)[r,uv]x = Oforall w,v,x,y € ] ,vr eR .....(10)

Right multiplying (9) by [r, uv] we obtain, for all w,v,x,y €] and r € R we get
f)ylr,uv] = F(x)ylr,uv] + G(x)y[r, uv]

+f)x[r,uv] — FO)x[r,uv] + GO)x[r,uv] = Oforall w,vx,y € J , v €R ........ (11)

Subtracting (11) from (10), we get,

~fIrwlx — FO) [ uvlx + G [r, wvlx — (F O)x[r, uv] — FQ)x[r,uv] + G(y)x[r,uv]) = 0
~ fO)(r, uvlx = x[r,uv]) — F(y)([r,uv]lx — x[r,uv]) + G(y)([r,uv]x — x[r,uv]) = 0
~(fO) —FO) + 6 )([r,uv]x — x[r,uv]) = 0

~(fO)-FO)+6)|[[r,uv],x] =0forallu,vx,y €], r €R .......eeinn.. (12)
Replacing x by 2x [s, t] where s,t € R, we obtain

~(fO)—-F) +6)J[ [r,uv], [s,t]] = Oforallu,v,y € J ,r,s,t €R ........... (13)
Since R is a non commutative prime ring, we get

SfO)—FO)+GW) =0forall y €] oo (14)

Replacing y by 4ryZin (14), where v R, we get
o f(4ry?) — F(4ry?) + G(4ry?) = Oforally €], r eR
c(fO)—F@+G6a)y?>=0forally €], r €R...ovviiiiiiiiiii (15)
~f(r)—F@)+G(r)=0forallr eR
“F=G+f

Case (i) Z(R)Nn]J = {0}

Let0=z€ Z(R)nJ andreplacingyby 2 yz = yozinF(x)x = xG(x), we get
vxf(z) =xyg) forall x,y € .o (16)

Replacing y by 2 [r,s] y in (16), where r, s € R, we get
[r,s]yxf(z) = x[r,s]yg(z) forall x,y €], 7,8 €R..covviriiiiiiininiinnn, 17
Left multiplication of (16) by [r, s)] gives
[r,9)]yxf(z) =[r,s)]xygz) forall x,y €], 'S €R «eoeviririiiiiiiiiiiiiiiea (18)
Subtracting (18) from (17), we get
x[r,slyg(z) — [r,s)]xyg(z) =0 forall x,y €], r,s eR
[[r,s],x]yvg(z) =0forall x,y €], r,s eR
[[r,s],x]Jg(z)=0forall xe€J, r,s eR ... (19)
Since R is a prime ring, Equation (19) forces that R is commutative of g(z) = 0.In this case where R is commutative
we get, F = G. Otherwise, (16) forces that f(z) = 0. So replacing in (1) x by 2rz, where r € R, we get

F(r)r =rG(r) forall T ER (20)

Therefore, using Lemma 3.1 together with (20), we get the desired result.

As consequence of our main result we extend some results of [4] in more then, for any homomorphism of right R-
modules h : R — R and any nonzero integera, oF + h is a generalized derivation associated to the derivation of. Applying
this to Theorem 3.2, we get the following.
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Corollary 3.3. Let R be a 2-torsion free prime ring, J be a nonzero Jordan ideal of R and two generalized derivations F and G
associated with f and g, respectively. Then, for any homomorphism of right R-modules h: R — R and any nonzero integer «,
ifF (x) x — axG(x) = hs(x) for all x ], then one of the following holds.

(1) Riscommutativeand F = aG + h.

(2) oG isaleft multiplierand F = oG + h + f.

For instance if we take (in Corollary 3.3) h = Sidy (where idy is the identity map on R and £ is an integer), then we get the
following result:

Corollary 3.4. Let R be a 2-torsion free prime ring, J be a nonzero Jordan ideal of R and two generalized derivations F and G
associated with f and g, respectively. Then, for any two integers a=0 and 3, if F(x) x — axG(x) = px? forall x ], then
one of the following holds:

(1) Riscommutativeand F = aG + pidg.
(2) oG isaleft multiplierand F = oG + Bidg + f.

Now we give the first desired result which is a generalization of [4, Theorem 3.7]
Corollary 3.5: Let R be a 2-torsion free prime ring, J be a nonzero Jordan ideal of R and two generalized derivations F and G
of R associated with f # 0 and g, respectively, such that G(x?) = 2xF(x) for all x ], then R is commutative and 2F =
G+ g.
Proof. By hypothesis,
G(x%) +xg(x) = 2xF(x)forallx ]
Then G(x)x — 2xF(x) = —xg(x) forall x €]
Therefore, the result using Corollary 3.3

Corollary 3.6. Let R be a 2-torsion free prime ring, J be a nonzero Jordan ideal of R and two generalized derivations F and G
of R associated with f = 0 and g = 0 , respectively,, respectively such thatF(u?) — 2uF(u) = G (u?) — 2uG (w)for all
u €/, then R is commutativeand F - G = f - g.
Proof. By hypothesis,
F(u?) — 2uF(u) = G(u?) — 2uG(u) forallu €]
Since F and G are additive maps, above equation can be rewritten as follows.
(F-G6)Yu?) =2u(F—-G))forallu ]
Ifweset K = F- G,wegetK(u?) = 2u K(u) forall u . Then by Corollary 3.5, we obtain the result.

Now our aim to give a generalization of [4, Theorem 3.6]. As done before we prefer at first giving the following general
result.

Also, as before, if we consider a generalized derivation F associated to a derivation, f, then, for any homomorphism of
left R-modules h:R — Rand any nonzero integera, oF + h is a generalized derivation associated to the derivation
af Applying this to Theorem 3.2, we get the following .

Corollary 3.7. Let R be a 2-torsion free prime ring, / be a nonzero Jordan ideal of R and two generalized derivations F and G
associated with f and g, respectively. Then, for any homomorphism of left R-modules h: R — R and any nonzero integer «,
if F(x)x — axG(x) = h(x)x for all x €], then one of the following holds:

(1) Riscommutativeand F - h = aG.
(2) aG iss left multiplierand F - h = oG + f.

As a consequence we get the following generalization of [4, Theorem 3.6].
Corollary 3.8.Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. If there are generalized derivations
F and G of R associated with derivations f andg =0, respectively, such that G (x?) = 2F(x) x for all x ], thenR is

commutative and 2F = G + g.
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